Flame-driven Deflagration-to-detonation Transitions in Type Ia Supernovae?

نویسنده

  • F. K. RÖPKE
چکیده

Although delayed detonation models of thermonuclear explosions of white dwarfs seem promising for reproducing Type Ia supernovae, the transition of the flame propagation mode from subsonic deflagration to supersonic detonation remains hypothetical. A potential instant for this transition to occur is the onset of the distributed burning regime, i.e. the moment when turbulence first affects the internal flame structure. Some studies of the burning microphysics indicate that a deflagration-to-detonation transition may be possible here, provided the turbulent intensities are strong enough. Consequently, the magnitude of turbulent velocity fluctuations generated by the deflagration flame is analyzed at the onset of the distributed burning regime in several three-dimensional simulations of deflagrations in thermonuclear supernovae. It is shown that the corresponding probability density functions fall off towards high turbulent velocity fluctuations much more slowly than a Gaussian distribution. Thus, values claimed to be necessary for triggering a detonation are likely to be found in sufficiently large patches of the flame. Although the microphysical evolution of the burning is not followed and a successful deflagration-to-detonation transition cannot be guaranteed from simulations presented here, the results still indicate that such events may be possible in Type Ia supernova explosions. Subject headings: Stars: supernovae: general – Hydrodynamics – Instabilities – Turbulence – Methods: numerical

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delayed detonations in full-star models of Type Ia supernova explosions

Aims. We present the first full-star three-dimensional explosion simulations of thermonuclear supernovae including parameterized deflagration-to-detonation transitions that occur once the flame enters the distributed burning regime. Methods. Treating the propagation of both the deflagration and the detonation waves in a common front-tracking approach, the detonation is prevented from crossing a...

متن کامل

Can Deflagration-Detonation-Transitions occur in Type Ia Supernovae?

The mechanism for deflagration-detonation-transition (DDT) by turbulent preconditioning, suggested to explain the possible occurrence of delayed detonations in Type Ia supernova explosions, is argued to be conceptually inconsistent. It relies crucially on diffusive heat losses of the burned material on macroscopic scales. Regardless of the amplitude of turbulent velocity fluctuations, the typic...

متن کامل

Small-scale Interaction of Turbulence with Thermonuclear Flames in Type Ia Supernovae

Microscopic turbulence-flame interactions of thermonuclear fusion flames occuring in Type Ia Supernovae were studied by means of incompressible direct numerical simulations with a highly simplified flame description. The flame is treated as a single diffusive scalar field with a nonlinear source term. It is characterized by its Prandtl number, Pr ≪ 1, and laminar flame speed, SL. We find that i...

متن کامل

Flame Evolution during Type Ia Supernovae and the Deflagration Phase in the Gravitationally Confined Detonation Scenario

We develop an improved method for tracking the nuclear flame during the deflagration phase of a Type Ia supernova, and apply it to study the variation in outcomes expected from the gravitationally confined detonation (GCD) paradigm. A simplified 3-stage burning model and a non-static ash state are integrated with an artificially thickened advection-diffusion-reaction (ADR) flame front in order ...

متن کامل

A Subgrid-scale Model for Deflagration-to-Detonation Transitions in Type Ia Supernova Explosion Simulations

Context. A promising model for normal Type Ia supernova (SN Ia) explosions are delayed detonations of Chandrasekhar-mass white dwarfs, in which the burning starts out as a subsonic deflagration and turns at a later phase of the explosion into a supersonic detonation. The mechanism of the underlying deflagration-to-detonation transition (DDT) is unknown in detail, but necessary conditions have b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008